Преимущества хлора перед гипохлоритом

Прежде всего, в очередной раз подчеркнем, что без хлора либо хлоробразующих соединений ну никак нельзя, если вода распределяется потребителям через водопроводную сеть, так как только хлор обладает эффектом последействия или пролонгированного действия, благодаря которому гарантируется бактериологическая безопасность воды в любой точке распределительной сети вплоть до крана каждого потребителя.

Все мы  с пищей употребляем поваренную соль (NaCl), то последняя, попадая в организм  человека, взаимодействует с находящейся там водой,  образуя чистый хлор, а именно:          2NaCl+2H?O= Cl?+2NaOH+ H?

Так как вода в организме человека имеет рН=7,0 -7,5, то появившийся хлор попадает в метастабильную зону и придает раствору наивысшую антибактерицидную активность. Отсюда следует, что хлор защищает наш организм  и другие организмы от разрушающего воздействия микроорганизмов. Теперь становиться понятна фраза: «Суточная потребность взрослого человека в хлоре (2-4 г) покрывается за счет пищевых продуктов». Именно «суточная потребность», так как хлор расходуется на уничтожение опасных для человека микроорганизмов и, соответственно, должен восполнятся.
Исследованиями последних десятилетий установлено, что все высшие многоклеточные организмы, включая человека, синтезируют в особых клеточных структурах  хлорноватистую кислоту и высокоактивные хлоркислородные и гидропероксидные соединения для борьбы с микроорганизмами. Этот механизм антибактериальной защиты, созданный Природой, функционирует во внутренней среде организма животных и человека на протяжении миллионов лет.

Минздравом разрешено применение более 200 средств для дезинфекции и стерилизации. Остановимся только на основных дезинфектатах, применяемых в странах СНГ и за рубежом.
Все технологические схемы очистки и обеззараживания воды (старые и новые) должны опираться на основные критерии, предъявляемые к качеству питьевой воды:
Причем, эти документы учитывают тот факт, что опасность заболеваний человека от микробиологического загрязнения воды во много
тысяч раз выше, чем при загрязнении воды химическими соединениями различной природы.
В существующей практике обеззараживания питьевой воды хлорирование используется наиболее часто как наиболее экономичный и эффективный метод в сравнении с любыми другими известными методами.
В США 98,6 % воды (подавляющее количество) подвергается хлорированию.

Такая популярность хлорирования связана и с тем, что это единственный способ, обеспечивающий микробиологическую безопасность воды в любой точке распределительной сети в любой момент времени благодаря эффекту последействия. Этот эффект заключается в том, что после совершения действия по внедрению молекул хлора в воду («последействие») последние сохраняют свою активность по отношению к микробам и угнетают их ферментные системы на всем пути следования воды по водопроводным сетям от объекта водоподготовки (водозабора) до каждого потребителя. Подчеркнем, что эффект последействия присущ только хлору. Учитывая состояние наших водопроводных сетей, забывать о присутствии в них микробов «смерти подобно».
Кроме главной функции — дезинфекции, благодаря уникальным окислительным свойствам и эффекту последействия хлор служит и другим целям — контролю за вкусовыми качествами и запахом воды, предотвращению роста водорослей, поддержанию в чистоте фильтров, удалению железа и марганца, разрушению сероводорода, обесцвечиванию воды и т. п. В этом смысле ни одно из альтернативных хлору средств не может сравниться с ним по универсальности и простоте применения.

Рассмотрим с точки зрения безопасности применение озонирования и УФ-облучения.
Несмотря на большой опыт применения озона в технологии водоподготовки, есть еще множество нерешенных проблем. Очень часто озонирование называют экологически чистым способом обеззараживания. Не понятно только, что послужило основанием такого определения. Последние исследования показали, что мнение об озонировании как о более безвредном способе обеззараживания воды ошибочно.
Так, продукты реакции озона с содержащимися в воде органическими веществами представляют собой альдегиды (формальдегид, ацетальдегид, глиоксаль, метилглиоксаль), кетоны, карбоновые кислоты и другие соединения, присутствие которых создает ряд дополнительных проблем в процессе водоподготовки, в том числе альдегиды увеличивают опасность образования хлорорганических побочных продуктов.
Применение другого альтернативного дезинфектанта — УФ-облучения позволяет избавиться от побочных продуктов обеззараживания, что является его несомненным достоинством. Но на сегодня его промышленное применение осложняется отсутствием возможности оперативного контроля эффективности обеззараживания воды. В соответствующих методических руководствах указывается на возможность применения УФ-облучения на этапе первичного обеззараживания воды при условии проведения на источнике водоснабжения технологических исследований. Вместе с тем в методических указаниях отмечается, что УФ-облучение обеспечивает заданный бактерицидный и вирулицидный эффект лишь при соблюдении всех установленных эксплуатационных условий. Одним из важнейших вопросов применения этого метода является создание гарантий пропуска всей обеззараживаемой воды через установку, т. е. производительность установки должна быть равна производительности водопроводной станции. Одним из важнейших вопросов применения этого метода является создание гарантий его надежности. С этой целью система должна быть снабжена датчиками измерения интенсивности УФ-облучения в камере обеззараживания, системой автоматики, гарантирующей звуковой и световой сигналы при снижении минимально заданной дозы, счетчиков времени наработки ламп и индикаторов их исправности для своевременной очистки при обрастании или замены.

1.Общеизвестно, что качество обеззараживания воды хлорсодержащими реагентами зависит от значения водородного показателя рН, так как именно значение рН воды определяет формы соединений хлора в воде и их активность. При низких значениях рН (от 0 до 3) преобладает молекулярный хлор Cl2 и в верхней половине этого диапазона начинает образовываться,
хлорноватистая кислота НСlO, возрастая количественно так, что уже в диапазоне значений рН от 3 до 6 в воде присутствует только хлорноватистая кислота НСlO.
А далее (рН>6) хлорноватистая кислота распадаетсяна ионы Н? и ClO?. Так, например, при рН = 6 доля HСlO составляет 97 %, а доля ClO? — 3 %. При рН = 7 доля HСlO составляет 78 %, а ClO? — 22 %, при рН = 8 доля
HСlO — 24 %, ClO?-76 %. А при рН>9 HСlO переходит полностью в гипохлорит-ион ClO?.
Таким образом из диаграммы на рис. 1 следует, что в зависимости от значения рН воды существуют зоны стабильности хлорреагентов в воде: зона Cl?, зона
HСlO, зона ClO?, в которых не проявляется их активность, и зоны нестабильности: зона Cl?  -HСlO (рН=1,5 -3,5), зона HСlO  — ClO – (рН=6–9). Так как рН воды поверхностных источников составляет 6,5–8,5, то вторая зона нестабильности должна быть предметом нашего внимания, так как именно в этой зоне проявляется высокая бактерицидная активность, причем наивысшая бактерицидная активность кислородных соединений хлора проявляется в диапазоне рН от 7,0 до 7,5, где концентрации гипохлорит-ионов и хлорноватистой кислоты сопоставимы.
Объясняется данный факт тем, что указанные соединения, являясь сопряженными кислотой и основанием (HClO + H?O ? H 3O? + ClO?; ClO? + H?O ? HClO +OH?), образуют в указанном диапазоне значений рН  большей степени определяется известным принципом Ле Шателье , т.е. гипохлоритные ионы все это время будут медлить переходить в активную форму, что весьма негативно будет сказываться на обеззараживании воды.
А что же с хлором? Технология ввода хлора в питьевую воду следующая: сначала на питьевой воде, взятой из водовода, как основе готовится хлорная вода путем
ввода в нее газообразного хлора, а затем хлорная вода вводится в тот же водовод. Практически нарушения химического равновесия и значения рН не происходит,
а значит качество обеззараживания воды при его применении гарантированно.

Это первое преимущество хлора

Гипохлорит натрия обладает существенно меньшей бактерицидной активностью, нежели хлорноватистая кислота, концентрация которой максимальна при растворении хлора в воде. Из приведенных на диаграмме (рис. 4)

На данных видно, что для достижения одинакового эффекта обеззараживания питьевой воды хлорноватистой кислотой, гипохлоритом натрия и хлорамином при одной и той же концентрации активного хлора, например, 0,1 мг / л, упомянутым реагентам требуется время менее 2 минут, более 100 минут и около 500 минут соответственно.

Это — второе преимущество хлора.

 

Санитарно-микробиологические исследования, проведенные в 2002 г. Институтом медико-экологических проблем и оценки риска здоровью (г. Санкт-Петербург), выявили недостатки гипохлорита с позиции функциональной эффективности и экологической чистоты. Оказалось, что раствор хлора в воде в несколько десятков раз эффективнее гипохлорита по остаточному количеству бактерий. Кроме того, гипохлорит неэффективен против цист, что ограничивает его применение на протяженных водопроводных сетях.

Это — третье преимущество хлора

Дискуссии о дезинфицирующей способности гипохлорита уже давно завершены врачами-эпидемиологами, и их выводы изложены в практическом руководстве, где указано, что гипохлорит натрия, полученный химическим и электрохимическим путем (неважно, каким) неэффективен против споровых форм микроорганизмов.

Это — четвертое преимущество хлора.

Кроме того, хорошо и давно известно, что гипохлорит натрия не в состоянии  обеспечить удаление биопленок с поверхности трубопроводов, которые благоприятны для развития микроорганизмов и вторичного загрязнения воды.

Это — пятое преимущество хлора.

Существенно и то, что замена газообразного хлора гипохлоритом натрия или кальция для дезинфекции воды вместо молекулярного хлора не снижает, а значительно увеличивает вероятность образования тригалометанов (ТГМ), что ухудшает качество воды, связанное с тем, что при применении гипохлорита увеличивается рН и процесс образования ТГМ растягивается во времени до нескольких часов, а их количество при прочих равных условиях тем больше, чем больше рН. Это обусловлено тем, что малоактивные гипохлорит-ионы не в состоянии быстро окислить наиболее реакционно
способные части молекул гумусовых веществ и потому реагируют с ними с образованием тригалометанов.

Это — шестое преимущество хлора

Сравнение эксплутационных затрат систем обеззараживания хлором и гипохлоритом, а также затрат на их внедрение явно не в пользу гипохлорита

(и это -седьмое)

  1. При замене хлора на гипохлорит, с одной стороны, ухудшается качество воды по химическому составу и ухудшаются бактериологические показатели воды, а с другой — себестоимость водоподготовки увеличивается.

Это — восьмое преимущество хлора.

 

Статистика по странам СНГ отсутствует, имеются только отдельные данные, но в связи с ростом использования гипохлорита картина аварийности мало чем будет отличаться от стран, имеющих большой опыт использования этого реагента.
Эта статистика происшествий с гипохлоритом вполне объяснима. С одной стороны, дело в том, что потенциальной опасностью гипохлорита является его полная несовместимость с кислотами, так как при рН < 5 равновесие реакции гидролиза NaClO смещается в сторону выделения молекулярного Cl?. Поэтому наиболее крупные аварии случаются при смешивании гипохлорита с кислотами, что приводит к выбросу газообразного облака хлора. При этом следует учесть, что выделяется в таких случаях влажный хлор, который при проникновении в легкие не вызывает болевых ощущений,
поэтому наиболее опасен и приводит к большим жертвам. С другой стороны, это постоянные газовыделения в ходе естественного разложения гипохлорита (см. рис. 5).

Поэтому в случаях, когда гипохлорит оказывался между двумя закрытыми запорными устройствами, наблюдались взрывы шаровых клапанов, фильтров, и других устройств. Причем, в составе выделяемого газа содержится и хлор, поэтому помещения насосных, туннелей, фильтровальных установок и других аналогичных пространств потребовалось оснастить системами очистки воздуха, причем такими, которые обеспечивают нейтрализацию выделяющегося хлора, т. е. в соответствии с «Правилами безопасности при производстве, хранении, транспортировании и применении хлора» ПБ 09–594–03, п. 5.11 «Помещения, где возможно выделение хлора, должны быть оснащены автоматическими системами обнаружения и контроля содержания хлора.
При превышении предельно допустимой концентрации хлора (ПДК) равной 1 мг / м3 должна включаться световая и звуковая сигнализация и аварийная вентиляция, сблокированная с системой аварийного поглощения. При использовании системы абсорбционного метода улавливания аварийных выбросов по сигналу датчика наличия хлора должны включаться насосы для подачи нейтрализующего раствора на орошение санитарной колонны, и затем аварийная вентиляция с запаздыванием на время необходимое для подачи орошающего раствора в санитарную колонну. При использовании двухпорогового газоанализатора хлора при превышении концентрации хлора 1 ПДК должны включаться световая и звуковая сигнализации, а при превышении 20 ПДК — аварийная вентиляция, сблокированная с системой аварийного поглощения».
Возникают проблемы и с подбором оборудования, и с его эксплуатацией в среде растворов гипохлорита, обладающих очень высокой коррозионной активностью.
При использовании вместо газообразного хлора гипохлорита натрия в процессе ввода этого реактива в систему трубопроводов для его разбавления там образуется осадок, состоящий из гидроксида магния и диоксида кремния, забивающий водные каналы, поэтому требуются дополнительные мероприятия и по предотвращению кальцинации арматуры, особенно точек ввода — инжекторов и диффузоров.

Подобных примеров можно привести множество. И из всего сказанного выше следует, что применение раствора гипохлорита вне зависимости от способа его
получения (промышленный или на локальных установках) в сравнении с хлором не только не снижает опасность происшествий и аварий на производственных объектах водоподготовки, но и способствует интенсивному разрушающему воздействию на технологическое оборудование, способствуя досрочному выходу его из строя.

Это — девятое преимущество хлора

 Своевременным является решение, вынесенное на совещании Ростехнадзора по теме: «Состояние и перспективы развития хлориспользующих объектов системе водоподготовки ЖКХ» в апреле 2008 года, в котором отмечается, что объекты, на которых применяются привозные или произведенные на месте гипохлорит натрия, двуокись хлора и озон, являются опасными и к ним применяются требования Федерального закона № 116-ФЗ«О промышленной безопасности опасных производственных объектов», что получило отражение в новой редакции закона от 30.12.2008 года № 313-ФЗ.

Таким образом, переход на гипохлорит натрия по принципу безопасности ошибочен. Это относится как к концентрированному гипохлориту натрия марки А с содержанием активной части 190 г / л, полученному промышленным способом, так и к низкоконцентрированному гипохлориту марки Э с содержанием активной части около 6 г / л, производимому на месте его использования. Согласно классификации ООН, гипохлорит натрия классифицирован как коррозионный — класс 8, № ООН -1791, группа опасности для хранения — PG II или PG III в зависимости от концентрации и по существующим «Инструкциям опасных товаров», хранение гипохлорита натрия в количестве более 250 литров требует оформления лицензии (лицензирование для разъедающих веществ и ядов). Требования безопасности при производстве хлора методом электролиза изложены в главе III ПБ 09-594-03. Технология получения хлора должна исключать возможность образования взрывоопасных хлороводородных смесей в технологическом оборудовании и коммуникациях при регламентных режимах работы. Однако, рассматривая схему работы электролизера, производящего низкоконцентрированный раствор гипохлорита натрия из раствора поваренной соли в проточном электрохимическом реакторе, следует отметить, что в емкости с готовым раствором гипохлорита образуется не чистый водород, а взрывоопасная смесь, состоящая из водорода, кислорода и хлора. Только вентиляция взрывоопасных электролизных газов приводит к бесконтрольному рассеванию в атмосфере хлора, что не допустимо и поэтому применение на объекте электролизеров должно предусматривать устройство нейтрализации выбросов хлора. Таким образом, объекты, на которых применяется, хранится, перерабатывается и т. д. гипохлорит натрия, отно-сятся к категории химически опасных объектов, которые в установленном порядке подлежат регистрации в гос. реестре опасных производственных объектов.

На этой десятой позиции хлор и гипохлорит равны